Recovery of neuromuscular function following competitive football matchplay

Dr. Callum Brownstein

Contents

- Demands of football match-play
- Importance of recovery in modern football
- Fatigue and recovery, what is known?

- Recovery of neuromuscular function following football match-play
- The effect of phase change material (cryotherapy) on recovery of neuromuscular function following football match-play
- Practical implications: training scheduling, fixture congestion and recovery strategies

Demands of competitive football match-play

Typical match-demands (aerobic)

- Total distance: 10-13 km
- High-intensity running: 2-3 km
- Average heart rate: 80-90% HR max
- Average VO₂: 70-80% of VO_{2max}
- Substantial aerobic demand

Demands of competitive football match-play

Typical match-demands (anaerobic)

- 1500 activities performed per-match
- Sprint distance (200-400 m)
- Change in activity every 4-6 s
 - Jumping/landing
 - Tackling
 - Accelerating/decelerating
 - Changing direction
 - Kicking
- High anaerobic energy turnover
- Substantial muscle damage

Demands of competitive football match-play

Increasing demands of competitive football match-play

Barnes et al (2014)

- Study conducted between 2006/07 and 2012/13.
- ~30% increase in high-intensity running
- ~35% increase in sprint distance
- ~85% increase in number of sprints

Fatigue during match-play: match-running performance

Transient fatigue: temporary reductions in work-rate following the most intense periods of a match

Cumulative fatigue: reductions in work-rate towards the end of a match.

Fatigue during match-play: technical performance and injury risk

Table 2 Differences between first and second half in physical and technical performance during official soccer matches of the Italian Serie A (n = 416)

Variables	First half	Second half	Difference mean value	Difference 95% Cl
Physical data (m)				
Total distance	5966	5862	-104	-145 to -61
High-intensity running	2038	1909	-129	-176 to -83
Very high-intensity running	633	591	-42	-66 to -18
Total distance with the ball	250	237	-13	-22 to -3
High-intensity running with the ball	142	130	-12	-19 to -5
Very high-intensity running with the ball	60	55	-5	-9 to 1
Technical data (number)			\frown	
Involvement with the ball	20.4	18.7	-1.7	-2.4 to -1.0
Short passes	12.0	10.8	-1.2	-1.8 to -0.7
Successful short passes	11.1	10.0	-1.1	-1.6 to -0.5
Percentage of successful short passes	91.6	91.3	0.3	-2.2 to 1.5
Long passes	2.2	1.9	-0.3	-0.5 to 0.1
Successful long passes	1.4	1.3	0	-0.3 to 0.1
Crosses	41.8	42.8	1.0	-3.9 to 5.9
Headers	0.6	0.6	-0.1	-0.1 to 0.1
Tackles	1.3	1.2	0	-0.3 to 0.1
Dribbling	0.7	0.7	-0.1	-0.1 to 0.2
Shots	0.4	0.3	-0.1	-0.1 to 0.1
Shots on target	0.7	0.7	0	-0.1 to 0.1

Figure 1 Distribution of traumatic injuries during a match (data from the 2006/07 and 2007/08 seasons).

Alberti et al., 2013; Rampinini et al., 2009; Ekstrand et al., 2011

Fatigue and recovery following football match-play

Northumbria

University

NEWCASTLE

Fatigue and recovery in football: what is known?

Time-course of recovery:

Sprint speed

- 5 hours (Andersson et al., 2008)
- 96 hours (Ascensao *et al.,* 2008; Magalhaes *et al.,* 2010)
- Countermovement jump (CMJ) height

- 48 hours (Ispirlidis *et al.,* 2008; Fatouros *et al.,* 2009)
- 72 hours (Andersson *et al.*, 2008; Magalhaes *et al.*, 2010)
- Maximal voluntary contraction (MVC)

- 48 hours (Rampinini et al., 2011)
- > 72 hours (Thomas et al., 2017; Ascensao et al.,

2008)

Fatigue and recovery in football: what is known?

Sports Med DOI 10.1007/s40279-017-0798-8

SYSTEMATIC REVIEW

Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis

```
J. R. Silva<sup>1,2</sup> · M. C. Rumpf<sup>1,3</sup> · M. Hertzog<sup>1</sup> · C. Castagna<sup>4</sup> · A. Farooq<sup>5</sup> · O. Girard<sup>5,6</sup> · K. Hader<sup>1,7</sup>
```

"While some parameters are recovered, our systematic review shows that a period of 72 h post-match play is not long enough to completely restore homeostatic balance."

"Overall, coaches must adjust the structure and content of the training sessions during the 72 h post-match intervention to effectively manage the training load within this time-frame."

Hours between start of first fixture and end of last fixture during the festive period

Pep Guardiola: Man City boss says fixture list congestion a 'disaster' for players

🛇 2 January 2018 | Man City | 🖻

Kevin de Bruyne, who has the most assists in the le

West Brom make formal complaint to Premier League over their 'terrible' fixture congestion

< Share

Alan Pardew isn't happy with West Brom's congested fixture (

Chelsea: Guus Hiddink wants doctors to challenge fixture calendar

O 28 February 2016 Football

Chelsea attacker Pedro suffered a hamstring injury in the win over Southampton

Chelsea manager Guus Hiddink says Premier League club doctors should put pressure on the game's authorities to change the fixture calendar.

m

Original article

Muscle injury rates in professional football increase with fixture congestion: an 11-year follow-up of the UEFA Champions League injury study

Håkan Bengtsson,¹ Jan Ekstrand,^{1,2,3} Martin Hägglund^{1,4}

Effect of 2 Soccer Matches in a Week on Physical Performance and Injury Rate

Gregory Dupont,*^{††} PhD, Mathieu Nedelec,^{††} MSc, Alan McCall,[‡] MSc, Derek McCormack,[‡] MD, Serge Berthoin,[†] PhD, and Ulrik Wisløff,[§] PhD From the [†]Laboratory of Human Movement Studies, EA 3608, Artois and Lille 2 Universities, France, [‡]Celtic Lab, Sport Science Department, Celtic FC, Glasgow, Scotland, and the [§]Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway

Original article

The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team

Alexandre Dellal,¹ Carlos Lago-Peñas,³ Ezequiel Rey,³ Karim Chamari,^{2,4} Emmanuel Orhant⁵

Original article

Muscle injury rates in professional football increase with fixture congestion: an 11-year follow-up of the UEFA Champions League injury study

Håkan Bengtsson,¹ Jan Ekstrand,^{1,2,3} Martin Hägglund^{1,4}

Table 4 Comparison of injury rates in matches with short (four or less days) or long (six or more days) recovery before the match

	≤4 days' recovery	≥6 days' recovery	RR	95% CI	p Value
All injuries					
League	29.0	26.6	1.09	1.00 to 1.18	0.045
UCL	33.0	27.1	1.22	0.85 to 1.75	0.290
EL	24.7	37.9	0.65	0.41 to 1.03	0.064
Other cup	27.8	23.6	1.18	0.94 to 1.47	0.153
Muscle injuries					
League	11.9	9.0	1.32	1.15 to 1.51	<0.001
UCL	13.1	7.9	1.66	0.85 to 3.24	0.135
EL	8.2	16.5	0.50	0.25 to 1.01	0.055
Other cup	10.5	8.3	1.26	0.87 to 1.83	0.218
Ligament injuries					
League	5.0	5.6	0.90	0.75 to 1.09	0.292
UCL	5.7	7.0	0.81	0.39 to 1.67	0.567
EL	3.7	8.2	0.45	0.17 to 1.25	0.126
Other cup	5.6	3.1	1.84	1.03 to 3.30	0.041

EL, Europa League; RR, rate ratio; UCL, UEFA Champions League.

Injury rate is expressed as the number of injuries per 1000 h of match exposure.

Fatigue and recovery in football: what is known?

Recovery in Socc Part I – Post-Match Fatigue

Mathieu Nédélec, ^{1,2} Alan McCall, ^{1,2} (Gregory Dupont^{1,2}

1 Université Lille Nord de France, Lille, !

2 LOSC Lille Métropole Football Club, C

Contents

Ab 1. 2.	strac Intro Post	t. duction Match Fatigue
	2.2 2.3	Glycogen Depletion
3.	2.4 2.5 Time 3.1 3.2	Summary. Course of Recovery Markers Magnitude of Fatigue. Relevance of Recovery Markers.
4.	Con	3.2.1 Physical Performance Mar 3.2.2 Cognitive Function

Fatigue and recovery in football: what is known?

frontiers in **PHYSIOLOGY**

Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise

Geoffrey M. Minett^{1,2}* and Rob Duffield³

¹ School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, Australia

2 Institute of Health and Biomedical Innovation Queensland I Inversity of Technology Kelvin Grove Rrishane OI D Australia

³ Sport and Exercise Discip

Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?

Ben Rattray^{1,2*}, Christos Argus², Kristy Martin^{1,2}, Joseph Northey^{1,2} and Matthew Driller³

¹ Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia, ² University of

Canberra Research Inst and Leisure Studies, Th

JOURNAL OF SPORTS SCIENCES, 2016 VOL. 34, NO. 14, 1296 http://dx.doi.org/10.1080/02640414.2016.1170475

EDITORIAL

Fatigue in football: it's not a brainless task!

Minett & Duffield, 2014; Rattray et al., 2015; Coutts, 2016

Aims

To examine the aetiology of fatigue and the timescale of recovery following competitive football match-play

To profile the time-course recovery of a range of simple measures of perceptual & physical function as markers of readiness to train

Northumbria University NEWCASTLE

Aims

ORIGINAL RESEARCH published: 25 October 2017 doi: 10.3389/fphys.2017.00831

Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play

Callum G. Brownstein¹, Jack P. Dent¹, Paul Parker¹, Kirsty M. Hicks¹, Glyn Howatson^{1,2}, Stuart Goodall¹ and Kevin Thomas^{1*}

¹ Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastie-upon-Tyne, United Kingdom, ² Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchetstroom, South Atrica

Methods

- 16 male semi-professional footballers (level 9 of EFL)
- Players studied over two 90-minute matches
- Measures taken pre-, post-, 24, 48 & 72 h post-match
- Neuromuscular measures:
 - Maximal voluntary contraction
 - Voluntary activation (motor nerve and motor cortical stimulation)
 - Potentiated twitch force
- Corticospinal excitability & SICI
- Physical measures:
 - o CMJ
 - o Drop-jump RSI
 - \circ 20 m sprint

Results

TABLE 3 | Match activity and heart rate variables during competitive soccer match-play.

	Total distance	High-intensity	Accels	Decels	Mean HR	Max HR
	(m)	(m)	(no.)	(no.)	(bpm)	(bpm)
Pooled data	10,041 ± 626	1,211 ± 257	315 ± 64	208 ± 56	164 ± 11	193 ± 10
Game 1	$10,037 \pm 552$	$1,286 \pm 199$	301 ± 64	197 ± 49	170 ± 11	197 ± 12
Game 2	10,046 ± 770	$1,126 \pm 303$	329 ± 64	218 ± 64	158 ± 7	189 ± 5
Season average	10,076 ± 1,363	1,456 ± 143	289 ± 97	204 ± 63	158 ± 12	194 ± 12

The study data was gathered across two competitive matches, while normative data from the same players was gathered throughout the competitive season (n = 16). Values are mean \pm SD. HIR, high-intensity running; Accels, accelerations; Decels, decelerations, HR, heart rate.

Results: perceptual measures

** = p < 0.01 and *** = p < 0.001.

m

NEWCASTLE

libm

Results: neuromuscular fatigue

Significant differences indicated by * = p < 0.05, ** = p < 0.01 and *** = p < 0.001.

Results: corticospinal excitability and SICI

Results: physical measures

Conclusions

Football match-play elicits impairments in voluntary activation and contractile function which persist for 48 to 72 h post-match

Perturbations within the central nervous system contribute to the prolonged decrement in muscle strength post-match

Northumbria University NEWCASTLE

Conclusions

The similar decline and subsequent time-course of recovery of the drop-jump RSI test suggests that this might be appropriate tools to indirectly assess the recovery of neuromuscular function post-match

Perceptual fatigue persisted even after neuromuscular function had recovered

Northumbria University NEWCASTLE

1) Football match-play elicits considerable muscle damage

2) Muscle damage causes prolonged impairments in contractile function (peak twitch force)

Reduction in peak twitch

Metabolic

- Accumulation of Pi
- Accumulation of H⁺ (maybe)
- Accumulation of ADP
- Rapid recovery

Mechanical

- Disorganisation of sarcomeres
- Damage to sarcoplasmic reticulum
- Impaired calcium release
- Slow recovery

3) Muscle damage elicits prolonged reductions in voluntary activation

Prasartwuth et al., 2005; Goodall et al., 2018

Effect of phase-change material on recovery of neuromuscular function following competitive football matchplay

Brownstein et al., (under review)

Phase change material vs traditional cryotherapy

Cold-water immersion

- Brief cooling stimulus (typically 10-15 minutes)
- Thermal discomfort
- Logistically impractical (e.g. away fixtures)

Phase change material

- Prolonged cooling stimulus
- Lower thermal discomfort
- Easy to implement

PCM: prolonged decrease in muscle temperature

PCM: recovery of muscle function

JOURNAL OF SPORTS SCIENCES, 2017 http://dx.doi.org/10.1080/02640414.2017.1312492

Check for updates

The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study

Susan Y. Kwiecien^{a,b}, Malachy P. McHugh^a and Glyn Howatson^{b,c}

PCM: recovery of muscle function

International Journal of Sports Physiology and Performance, 2018, 13, 584-589 https://doi.org/10.1123/ijspp.2017-0334 © 2018 Human Kinetics, Inc.

Cryotherapy Reinvented: Application of Phase Change Material for Recovery in Elite Soccer

Tom Clifford, Will Abbott, Susan Y. Kwiecien, Glyn Howatson, and Malachy P. McHugh

Methods

- 11 male semi-professional footballers (level 8 of EFL)
- Players studied over two 90-minute matches. Players wore either frozen PCM (PCM_{cold}) or unfrozen PCM (PCM_{amb}) for 3 h post-match.
- Measures taken pre-, 24, 48 & 72 h postmatch
- Neuromuscular fatigue measures:
 - Maximal voluntary contraction
 - Voluntary activation (motor nerve and motor cortical stimulation)
 - Potentiated twitch force
- Physical measures:
 - o CMJ
 - o Drop-jump RSI

Results: match-demands

Results: soreness and fatigue

Results: neuromuscular responses

Results: neuromuscular responses

Results: physical function

Conclusions

Conclusions

Practical implications: training scheduling

Practical implications: training scheduling

D

300-

250

200

150

100

Pre-

Post-

Q_{tw.pot} (N)

using rating of perceived exertion during the pre-season and inseason periods. *P < 0.05, significant difference between the preseason and in-season periods.

72 h

NEWCASTLE

72 h

48 h

24 h

Practical implications: squad rotation

Practical implications: squad rotation

libm

pie de la Matrialité

atique Santé

Practical implications: recovery strategies

Merci, désolé je n'ai pas pu présenter en français !

Dr. Kevin Thomas

Dr. Stuart Goodall

Prof. Glyn Howatson

Prolonged impairments in VA and peak twitch force – mechanisms: Glycogen depletion?

Muscle Glycogen Content Modifies SR Ca²⁺ Release Rate in Elite Endurance Athletes

KASPER DEGN GEJL¹, LARS GRØNDAHL HVID¹, ULRIK FRANDSEN¹, KURT JENSEN^{1,2}, KENT SAHLIN³, and NIELS ØRTENBLAD^{1,2}

Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game

Peter Krustrup · Niels Ørtenblad · Joachim Nielsen · Lars Nybo · Thomas P. Gunnarsson · F. Marcello Iaia · Klavs Madsen · Francis Stephens · Paul Greenhaff · Jens Bangsbo

		Present study	Thomas <i>et al</i> .(2017)
	MVC		
	pre-post	-14 ± 9%	-16 + 8%
	pre-24	-11 ± 6%	-10 + 6%
	pre-48	-4 ± 6%	-7 + 5%
	pre-72	-2 + 9%	-3 + 4%
	Q tw,Pot		
	pre-post	-14 ± 6%	-14 ± 10%
	pre-24	-6 ± 6%	−13 ± 5%
	pre-48	-1 ± 4%	-9 ± 6%
	pre-72	-3 ± 7%	−5 ± 6%
	VA		
	pre-post	-8 ± 6%	-9 ± 4%
	pre-24	−5 ± 5%	-4 ± 2%
	pre-48	0 ± 4%	-2 ± 3%
	pre-72	0 ± 3%	-2 ± 4%
	CVA		
	pre-post	-6 ± 4%	−11 ± 6%
UNIVERSITÉ	pre-24	−2 ± 5%	-3 ± 3%
SAINT-ÉTIENNE	pre-48	−1 ± 5%	0 ± 4%
ActiFS	pre-72	0 ± 5%	0 ± 3%
Activité Physique	Laborataire Interveiversitaire de Biologie de la Matriciata		

PCM: prolonged decrease in muscle temperature

Neuromuscular impairment throughout matchplay

